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Plans for Today

● Basics of Parallel I/O (20′)

● I/O Performance Characterization and Darshan (30′)

● Typical I/O Bloopers (20′)

● Break / Account Setup (20′)

● Hands-on Exercises (70′)

 





I/O for Computational Science

Additional I/O software provides improved performance and 
usability over directly accessing the parallel file system. Reduces 
or (ideally) eliminates need for optimization in application codes.

 



Local File Systems

Persistent data structure 
maps from a user’s 
concept of a file to the 
data and attributes for 
that file.

Early research and 
differentiation was all 
about optimizing access 
to a single device

UFS, EXT4, ZFS, NTFS, 
XFS and BtrFS are local 
file systems
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Parallel File Systems

 

An example parallel file system, with large astrophysics 
checkpoints distributed across multiple I/O servers (IOS)  
while small bioinformatics files are each stored on a single 
IOS
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Lustre and GPFS Data Path
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Lustre clients stripe data across Object Storage Servers (OSS), 
which in turn write data through a RAID controller to Object Storage 
Targets (OST).  OST hides local file system data structures

GPFS has different metadata model but a similar data path
Control protocols to metadata servers are not shown

 



Access Patterns
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Serial, multi-file parallel and shared file 
parallel I/O

Serial I/O
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What’s wrong with POSIX?

■ It’s a useful, ubiquitous interface for basic I/O
■ It lacks constructs useful for parallel I/O

– Cluster application is really one program running on N nodes, 
but looks like N programs to the filesystem

– No support for noncontiguous I/O
– No hinting/prefetching

■ Its rules hurt performance for parallel apps
– Atomic writes, read-after-write consistency
– Attribute freshness

■ POSIX should not have to be used (directly) in parallel 
applications that want good performance
– But developers use it anyway

 



MPI-IO

■ I/O interface specification for use in MPI apps
■ Data model is same as POSIX

– Stream of bytes in a file
■ Features:

– Collective I/O
– Noncontiguous I/O with MPI datatypes and file views
– Nonblocking I/O
– Fortran bindings (and additional languages)
– System for encoding files in a portable format (external32)

• Not self-describing - just a well-defined encoding of types

■ Implementations available on most platforms (more later)

 



Simple MPI-IO

■ Collective open: all processes in communicator 
■ File-side data layout with file views
■ Memory-side data layout with MPI datatypepassedto write

 

MPI_File_open(COMM, name, mode,
info, fh);
MPI_File_set_view(fh, disp, etype, 
filetype, datarep, info);
MPI_File_write_all(fh, buf, count, 
datatype, status); 

MPI_File_open(COMM, name, mode,
info, fh);

MPI_File_set_view(fh, disp, etype, 
filetype, datarep, info);
MPI_File_write_all(fh, buf, count, 
datatype, status); 



Independent and Collective I/O

■ Independent I/O operations specify only what a single process will do
– Independent I/O calls do not pass on relationships between I/O on other processes 

■ Many applications have phases of computation and I/O
– During I/O phases, all processes read/write data
– We can say they are collectively accessing storage

■ Collective I/O is coordinated access to storage by a group of processes
– Collective I/O functions are called by all processes participating in I/O
– Allows I/O layers to know more about access as a whole, more opportunities for 

optimization in lower software layers, better performance
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Contiguous and Noncontiguous I/O

■ Contiguous I/O moves data from a single memory block into a single file region
■ Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
■ Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)
■ Describing noncontiguous accesses with a single operation passes more knowledge 

to I/O system
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Extracting variables from a block and 
skipping ghost cells will result in 
noncontiguous I/O.



MPI-IO Wrap-Up

■ MPI-IO provides a rich interface allowing us to describe
– Noncontiguous accesses in memory, file, or both
– Collective I/O

■ This allows implementations to perform many 
transformations that result in better I/O performance

■ Ideal location in software stack for file system specific 
quirks or optimizations

■ Also forms solid basis for high-level I/O libraries
– But they must take advantage of these features!

 



■ Bigger IO Size
■ Do not stat
■ Try to avoid POSIX shared file
■ Minimize Seeking
■ Use Collectives when possible
■ Use High Level Libraries (HDF5, etc) when possible

General Principles for Better I/O


